The Glacier Lab

BY MARK CAREY, ASSOCIATE DEAN AND ASSOCIATE PROFESSOR OF HISTORY, CLARK HONORS COLLEGE

Science professors always have labs. That’s how they do science. And labs generate far-reaching benefits for everyone involved—from building an intellectual community to collaborating on research, coauthoring articles, mentoring students and postdocs and, of course, having good intellectual fun. But while biology, chemistry, and other science departments always have labs, they pretty much don’t exist in the humanities or social sciences. Until now.

Last year, I officially inaugurated the Glacier Lab in the Honors College. Scientists shouldn’t be the only ones to have all the intellectual fun. After all, historians should also be able to build a lab and benefit from its intellectual community. As part of my National Science Foundation (NSF) Career Grant that runs from 2013 to 2018, I had proposed to build a lab to “train students in research skills, and give them professional experience disseminating research results.” The goal was to offer a model for faculty-student collaboration in science and technology studies research.

Now the Glacier Lab is up and running. Its mission is to understand ice and society: how glaciers have shaped societies, how people live in Earth’s ice-cold landscapes, and how populations are responding to ice loss and glacier shrinkage. Members explore a range of topics, such as glacier runoff and water supplies in the Himalaya, or perceptions of melting glaciers in Iceland. Others analyze the intersection of geopolitics and science in Antarctica, as well as the history of bombing icebergs in the North Atlantic.

On a structural level, the Glacier Lab looks like a science lab. There is a collective focus on glacier-society research, coauthorship on publications, regular meetings to discuss members’ research, sharing information related to everyone’s expertise and interests, common readings, and supported exploration of each person’s own projects—sometimes even as we eat pizza or share birthday cake. The Glacier Lab has six members, including a CHC sophomore and senior, a geography master’s student, a geography PhD student, a postdoctoral research fellow, and myself. To have the span from undergraduates and graduate students to a postdoc and tenured professor means there are tremendous opportunities for mentorship and learning—but the excitement is seeing the learning flow in multiple directions. Last month, for example, when reading the Glacier Lab postdoc’s (Alessandro Antonello) book proposal on Antarctic history, the Honors College students were getting a glimpse of how the publishing world works and what the production of a book proposal involves. Yet they were also weighing in with wonderful, constructive feedback about how the book could reach a broader audience and how the chapters held together. Antonello’s book will be stronger as a result of these dynamic lab conversations.

Exciting outcomes have already resulted. Toward the end of last summer, I started working with the two CHC students—sophomore Lincoln James and senior Hannah Fuller—on a project related to the work of the Intergovernmental Panel on Climate Change (IPCC) and its most recent climate-assessment report. The IPCC is the world’s preeminent body on climate change, but the three of us noted significant deficiencies in the IPCC’s author composition (e.g., no one from the humanities) and its framing (lacking the truly multidisciplinary approach embedded in the IPCC mission). Lincoln, Hannah, and I conducted research and cowrote an article for the journal Nature Climate Change to make a case for improving the next IPCC and enhancing global environmental change research more broadly. Hannah captures our experience on the article and the lab: “Being a part of the Glacier Lab has allowed me the

danish

continued on page 9
Prospective students, their parents, and the larger public are often surprised when they learn that our largest majors in the Clark Honors College are in the natural sciences, specifically in biology and human physiology. It seems that many believe that liberal arts education, the Clark Honors College in particular, and the sciences are at best an awkward union, and at worst, simply incompatible. As an historical scientist and an advocate of honors education, I have never thought of liberal arts and science education as being at odds. Inter-disciplinary breadth, problem-focused inquiry, critical thinking, as well as analytic and communication skills are essential to quality education. They are also the foundation to adaptability in a world of fast-paced change and new careers. As higher education faces a growing crisis of underachievement, liberal arts and honors education emerge as a solution.

This crisis of college underachievement stems, I believe, from the notion that higher education is primarily a training camp for careers—learn a subject and go out and do it. Some politicians bemoan funding “intellectual curiosity” and instead believe universities should support “work force needs.” Employment is important, but we need more than occupational skills and specialized knowledge; our society, democracy, and planet demand a critical, reflective, and responsive citizenry. The New York Times’ Frank Bruni described learning as a lifelong awakening to the complexity of the world. He went on to argue that despite the high costs of education, we can’t put a dollar value on cultivating the adaptable intellect and exposing students to the lessons of history and the inspiration of literature. Education fails otherwise.

Long held tradition in liberal arts and honors education are not only creating well-rounded individuals, but also transforming pedagogy in science and math. A few years ago at the national meetings of the American Association for the Advancement of Science I attended a symposium on how small classes, “active learning,” peer instruction, teamwork, and discussion-based learning are successfully reversing the high failure rates in large lecture classes. Given my experience in teaching honors I knew why such classes would be so much more successful than large lecture classes with student anonymity and multiple-choice examinations. Today we see the emergence of medical humanities and other curricula to integrate the liberal arts experience into nurturing the adaptable intellect in future physicians and researchers in the sciences.

The Clark Honors College embodies these values. Liberal arts education is not new. Its longstanding traditions are well tested and proven, particularly in educating better scientists.
The Value of an Integrated Research Education

By Brad Shelton

The University of Oregon is a comprehensive research university operating on a human scale. This serves us well when it comes to training the next generation of researchers.

The UO offers students access to world-class researchers and high-tech scientific equipment. We integrate cutting-edge methods of inquiry into our undergraduate curriculum—like the use of the model organism *Neurospora crassa* in courses designed by National Academy of Sciences biologist Professor Eric Selker. Our faculty members are as committed to teaching and mentoring as they are to their research. They recognize that students—and not just graduate students—can be a vital part of the research endeavor.

An education that includes access to research training is more important than ever. But the remarkable access that our students enjoy extends beyond simply being exposed to science, technology, engineering, and mathematics (STEM) fields. A UO education is grounded in a liberal arts experience, which makes our students well prepared for a world in which creativity is also a requirement.

Students in the Clark Honors College understand this need for an integrated education. Researching, writing, and defending a thesis are core elements of the Honors College experience. In addition to conducting their own independent research, Clark Honors College students find opportunities to participate in other aspects of the research endeavor—from proposal submission to experimentation to publication—and our faculty members support these efforts.

Many of these same students find ways to help encourage others to pursue careers in STEM fields. They volunteer with outstanding programs such as the Science Program to Inspire Creativity and Excellence (spicescience.uoregon.edu), which inspires girls to enter STEM fields by offering mentorships and early hands-on research experiences.

Undergraduates at the UO have plenty of ways to get involved in research. The Science Literacy Program is funded by a Howard Hughes Medical Institute award and offers general-education courses for nonscience students. Students are encouraged to consider scientific approaches to societal issues, and have the opportunity to learn how to process and critique scientific information. There are also mentored teaching opportunities for students who are interested in science that help them learn the theory and practice of scientific teaching, and effectively communicating ideas to audiences of nonscientists.

The Research Experiences for Undergraduates Program offers summer research trainings that provide students with the opportunity to work closely with experienced investigators. The offerings include a National Science Foundation–sponsored program for physics and chemistry majors, and a program for students from other institutions to participate in ongoing research in life sciences laboratories at Oregon. This year we saw the launch of Presidential Undergraduate Research Scholars (urop.uoregon.edu/students/opportunities/current-uo-opportunities/urop-affiliated-programs/purs), an exciting new program that offers research funding to 10 promising undergraduate students. Another recently unveiled initiative, the Undergraduate Research Opportunity Program (urop.uoregon.edu) serves as an informational clearinghouse that helps students get started in research, find research funding, locate research opportunities, and learn more about UO research resources.

Training the next generation of researchers is something we do well at the UO, but it isn’t just about science and math. We value all forms of creativity, innovation, and communication, and we strive to educate students broadly. An estimated 80 percent of the fastest-growing occupations in this country depend on a mastery of mathematics and scientific knowledge, but many of these same future jobs will demand creativity and innovation. These jobs will be in fields we have yet to imagine and require solving problems that don’t yet exist by applying technologies that haven’t yet been invented.

Some have described this expanded vision of STEM education as STEAM education (science, technology, engineering, arts, and mathematics). Whatever you call it, UO students understand its value and students in the Clark Honors College are exemplars of this brand of integrated research education.

Brad Shelton is the UO’s interim vice president for research and innovation. He also serves as vice provost for budget and planning and as a professor in the Department of Mathematics. As the UO’s chief research officer, Shelton oversees 19 research centers and institutes and nine core research facilities, as well as sponsored research, research compliance, technology transfer, and the Riverfront Research Park. An active researcher, Shelton has been with the UO since 1985. His most recent projects are in the theory of Koszul algebras, generalized Koszul algebras, and connections between noncommutative rings and combinatorial algebraic topology.
Reflections on Gandhi Spur a Preventive Health Career

By Nina Parikh ’07

Perhaps one of the most meaningful experiences I had in the Clark Honors College was the class I took about Gandhi the quarter before I left for India to complete a five-month public health rotation. In addition to Gandhi’s life and teachings, we learned about Indian history, religion, politics, and social structure that grounded my subsequent exposure to the realities of health disparities in India, and would eventually shift the direction of my career. For part of my credit requirements, I kept a daily journal about the patients I met in clinical exposures, and about the more personal aspects of connecting with my grandma, with whom I lived for most of the program. That journal holds some of my most personal thoughts and observations on life in India, and I’m incredibly thankful to the CHC for asking me to complete such reflective work.

The course on Gandhi and my time in India helped me determine that I was passionate about preventing illness (especially in vulnerable populations, and I began a career focused on social justice and public health. I currently work at the Stanford Prevention Research Center helping conduct research on tobacco-control policies including youth access and marketing of tobacco products at the point of sale. I would argue that what I learned in the Honors College—critical reading, clear writing, and meaningful discussion—is far more useful to me in my current position than many of the hard science skills I learned in a lab. I often go to the Internet to refresh my knowledge on stats or human physiology, but writing and communication skills are developed over time and require feedback in order to improve (my CHC experience did plenty of that!).

In addition to providing my undergraduate “STEM brain” with some much-needed “right-brain” stimulation, the CHC also introduced me to lifelong friends (including one who is now my fiancé). We all bonded early over study sessions in the Honors College dorms, late nights working in the lounge, agonizing over writing our theses, sweating over thesis presentations, and eventually celebrating passing our theses (with an Honors College professor over beer pong). We now live all over the country and keep in touch through a yearly Friendsgiving gathering and through a virtual book club where we select a book to read and discuss and carry on the Honors College tradition.

Nina Parikh is project manager at the Stanford Prevention Research Center.

Tomorrow’s Researchers: Breadth, Depth, and Perspective

By Charles Ide ’71

In 1970, I was afforded a wonderful opportunity by the Clark Honors College to become an independent scholar during my junior and senior years. I could design my own curriculum, so I chose a research-intensive program. I first worked in Dr. Charles Kimmel’s lab learning molecular biology by studying the relationship between DNA replication and transcription in a cell line derived from tumor cells. I followed that experience by doing a neuroscience and behavior project in the lab of Dr. John Fentress. We studied the development of behavior in two genetic strains of mice using computer-assisted film analysis.

I then worked under Dr. Paul Rudy’s mentorship at the Oregon Institute of Marine Biology, located in Charleston, Oregon, studying marine ecology. Amazingly, my fellow students and I wrote and received a special National Science Foundation grant to define the projected impacts of a funded federal project that involved dredging the main ship channel in the Coos Bay estuary to allow larger lumber transport ships to enter the estuary. The problem was that the dredged spoil was to be dumped onto a giant tidal mud flat that served as a nursery ground for many commercially important seafood species. Student ecologists, social psychologists, architects, urban planners, and economists, ultimately found that the economic losses to the seafood industry, due to the loss of this tidal nursery, would be greater than the economic gains projected for the timber industry via the deepened ship channel. And, the people of Coos Bay much preferred a more scenic downtown waterfront. Dr. Rudy presented our data and other findings to the federal government, which resulted in protection of the estuarine nursery!

After graduating from the Clark Honors College, I earned my PhD in Neuroscience and Behavior from the Department of Biology at Princeton University. After several postdoctoral research experiences, I gained tenure as a Biology professor at Tulane University. Right after the tenure decision, the Tulane administration asked me to serve as the Deputy Director of a new Bioenvironmental Research Center that would generate basic biomedical research aimed at defining and helping mitigate environmental problems that are a source of ecosystem and human health risk. In time, I moved from Tulane to found a similar center at Western Michigan University.

When I look back on it all, I see that the interests and philosophy I developed as an Honors College student laid the foundation for

continued on page 9
Liberal Arts Builds Critical Skills

By Michael Boehnke ’77

From the time I began to think about college, I assumed I would be a math major. I always liked math and was good at math, I have two uncles who are statisticians, and math seemed the obvious choice. In my first two years at Oregon, everything went according to plan: I enjoyed classes, college life, and all the amazing opportunities that a first-rate undergraduate education provides. But early in my junior year, I began to wonder what would come next. What would I do with my math degree? I decided a career in pure mathematics was not for me, feeling that even if I managed to do something wonderful, I could tell the six people in the world who would understand what I had done, and then try to do it all over again. Pretty simplistic, but I was only 19 years old.

I spent the next two years completing my math degree and honors thesis, and casting about for what might come next. I decided to go to law school; I was active in Oregon politics, and I liked the idea of combining law and public service. However, a first key moment came early in my senior year, when Clark Honors College’s then director, Ed Diller, suggested I apply for a Fulbright Scholarship. While I had heard of the Fulbright Program, I had never imagined myself as qualified. Thanks to Ed, I applied for and was awarded the scholarship. My plan was to spend the year in Freiburg, Germany, and then return for law school.

The winter and spring terms of my senior year, I volunteered in the lab of ecologists Bill Bradshaw and Chris Holzapfel, doing statistical analysis of their studies on pitcher plant mosquitoes. A second key moment came while discussing my career plans with Bill; he suggested, “Mike, you should go to graduate school in mathematical biology.” I replied, “But Bill, I haven’t had a class in biology since the seventh grade.” And he responded, “Who cares?” It took a few months and a semester in Germany to decide I loved math too much to give it up, and so eventually I agreed. I spent the rest of my time in Germany studying biology and applying to graduate schools, and enrolled the next fall in the biomathematics department at UCLA. There, I augmented my undergraduate training with additional courses in math and science, including a lot of biology. I began to focus on statistical human genetics, with the goal to better understand the genetic basis of human disease. Thirty-five years later, this subject still fascinates me, and my students, colleagues, and I have together identified hundreds of locations in the human genome that play a role in a wide range of human diseases and traits.

The CHC provided me all the small-college benefits of personalized mentoring, and all the opportunities only a large state school can offer. My undergraduate education was broad and deep, with my major courses in mathematics, computer science, and statistics complemented by courses with subjects like the history of ideas, Europe since 1789, and the novels of Kurt Vonnegut. This broad liberal arts education taught me to write, to communicate, and to think critically, skills important in any field, and as essential to a scientist as our own disciplinary knowledge.

Michael Boehnke, PhD, is the Richard G. Cornell Distinguished University Professor of Biostatistics, University of Michigan at Ann Arbor School of Public Health, and Director, University of Michigan Center for Statistical Genetics and Genome Science Training Program.
The Need for Compassionate Scientists

By David Jordan ’06

Mathematicians today have descended from the ivory tower and are at large in the world. The long-held stereotype of a mathematician working away in isolation on obscure or arcane problems simply no longer applies. The modern landscape is one of complex social networks, data streams, encryption and surveillance, stocks traded by computer thousands of times per second. Mathematicians find work in technology, Internet commerce, energy, finance, and in both the private and state security industries. Even those of us whose work is completely confined to research and teaching have an impact on hundreds of students each semester who will someday take their skills into these fields.

This ever-expanding role for mathematics in society raises a question for today’s mathematicians: are we prepared to bear the responsibility that all of this impact entails? Are we equipped with the critical skills, the global awareness, and the vision to foresee the impacts—good and bad—of our technical contributions on the lives of people around the world? Just as the RSA encryption protocols—which run Internet commerce and protect our communications privacy—depend on deep mathematics, so, too, do the vulnerabilities allegedly exploited by the NSA for surveillance in recent years. Likewise, entire economies rise and fall based on the mathematical models developed by “quants”—mathematicians working for finance companies. It is no more a political statement to acknowledge these realities than it is to deny them. So, finally, will we as mathematicians allow ourselves to be cogs in a machine we do not challenge or question, or will we use our unique skills as leverage to help shape the world around us for the better? These are questions confronting every single mathematician today.

Institutions like the Clark Honors College have an important role to play in empowering scientists to take the reins. In today’s world, science is power. Unfortunately, it is not cultural context, it is not compassion, it is not history, and it is not perspective. More than ever, the world needs scientists who push themselves to stay compassionately aware of the impact of their work, not only as analysts or observers but as thinking, feeling human beings. Students of Clark Honors College have unique access, both to the research apparatus and academic mentorship a flagship state university can provide, and to a liberal arts curriculum centered on art, literature, history, anthropology, gender, and race studies. This dual access is absolutely crucial for preparing future scientists to carry the heavy responsibility of leadership. I am proud of my time at Clark Honors College, and of the course it has set me upon.

David Jordan, PhD, is a chancellor’s fellow and lecturer at the University of Edinburgh School of Mathematics.

A STEM Career: Full Circle with the National Science Foundation

By Al West ’67

Science, technology, engineering, and mathematics were vibrant fields of study long before a Washington bureaucrat came up with the STEM acronym to encourage students to get into these fields. As a child growing up in the 1950s and 1960s, I observed technology’s increasing influence on society. Television sets appeared in homes, transistor radios were the rage; the USA and USSR were engaged in the space race to launch the first satellite, and then get to the moon. It was an exciting time to grow up, and science offered challenging careers.

While I had been accepted at several engineering institutions like MIT and Cal Tech, I decided that the Clark Honors College offered a bold and stimulating opportunity to associate with outstanding teachers and fellow students in small classes in a liberal arts setting. In those days (I entered the UO in 1963), the Honors College was still very much an experiment. To me, the core curriculum ensured that I took subjects outside the science and math courses in which I excelled so that I received a multidimensional education that would serve me well going into the future. The non-STEM courses I took made me think about subjects far afield from my interests. The cumulative exams we took made sure that I could synthesize the breadth of an entire year of course material.

As a chemistry and math major, I was fortunate to engage in student research starting in the summer of my freshman year. This work culminated in my CHC honors thesis, and was a great training ground for my doctoral work. After receiving my PhD, I went to work at a national laboratory, beginning my career as a research scientist and later moving into management. The education I received in the CHC provided a solid foundation for any job opportunity I encountered during my 35-year career. I ended my professional career helping the National Science Foundation at an Advanced Technological Education Center working with undergraduates. It was an opportunity to give back, and come full circle, as the NSF funded both my undergraduate and graduate research careers.

Al West, PhD, is a retired scientist and a member of the CHC Advisory Council.
Hilbert Space in Deady Hall

Editor’s Note: In his guest viewpoint on page 3, Brad Shelton, VP for Research and Innovation, touched on STEAM as an expanded version of STEM. The Hilbert Space Windows illustrate the interconnection of science, technology, and art.

Four beautiful stained glass windows decorate Hilbert Space, the undergraduate mathematics lounge in Deady Hall. The space is named after David Hilbert, one of the outstanding mathematicians of the modern era, whose work on infinite-dimensional space proved invaluable for quantum mechanics. The windows were created by David Jordan, BA ’06, to honor four members of the UO mathematics faculty: Frank Anderson, Dick Koch, Hal Sadofsky, and Kathleen Triguero, who collectively established Hilbert Space. The common motif at top and bottom of each window depicts a proof of the Pythagorean theorem in Euclidean geometry. The main themes of each window correspond to the pillars of the mathematics degree:

- **Calculus**—Window 1: a method for comparing area and circumference of a circle
- **Topology**—Window 2: the Klein bottle, a closed nonorientable surface
- **Algebra**—Window 3: Tartaglia’s solution of the cubic equation
- **Analysis**—Window 4: the relationship between the Fibonacci numbers, the golden spiral, and the golden ratio

Editor’s Note: In his guest viewpoint on page 3, Brad Shelton, VP for Research and Innovation, touched on STEAM as an expanded version of STEM. The Hilbert Space Windows illustrate the interconnection of science, technology, and art.

- Thirty-eight percent of the Fall 2014 Freshman Class entered the CHC with a declared STEM major.
- Thirty-three percent of the 2014–15 CHC student body are majoring in STEM.
- Nearly ten percent of CHC students are Biology majors.
- Seventy-five percent of the CHC student body are Oregon residents.
- Twenty percent (one in five) of CHC students pursue a double or triple major.

Did You Know?

38% 33% 75% 20%
Synthetic Thinking Brings Science Stories to the Masses

BY STEVEN ALLISON-BUNNELL ’88

I almost went to film school. In high school, I wanted nothing more than to make science documentaries for Nova on PBS. But the incentive of a UO Presidential Scholarship, and the fact that my mother belonged to one of the earliest Honors College’s classes, swayed me toward a liberal arts education as the foundation of my future media career. Today, although I am not a filmmaker, I am a teller of stories about science, and the trajectory of my professional life has been profoundly shaped by my CHC experience.

I can’t remember if I realized it myself or if someone gave me this advice, but I concluded that to tell stories about science, I needed to know which stories to tell more than the mechanics of how to assemble a film. The intersection of my CHC courses and a biology major began the development of what became a sweeping meta-perspective on the scientific enterprise. In particular, Bernard Lightman’s history of science seminar in 1985 was my first exposure to Thomas Kuhn’s *The Structure of Scientific Revolutions*. Professor Lightman began the first day of class saying, “Let’s do some history.” The permission to develop our own insights into the past, combined with Kuhn’s notion that science is shaped by historical and social forces, was pedagogically radical and intellectually captivating. By the time I graduated with real experience in both bench and field biology, I knew I wanted to understand not just scientific knowledge itself, but how it came into being.

If anyone unfamiliar with the CHC might question the quality of an Honors College degree, I’m happy to say that as a paper credential it was enough to get me into Cornell’s Science and Technology Studies PhD program with full funding. And the habits of mind and writing skills I learned in the CHC saw me through the rigors of grad school.

At Cornell, I remained determined to be a science popularizer rather than an academic. I studied natural history museum exhibits for my dissertation, and ended up at the Smithsonian to conduct my research and writing. While I was finishing in the fall of 1994, a friend told me about something called the “World Wide Web.” I had been a computer user since a PC was a home-built kit, and so I ended up at the Discovery Channel headquarters as part of my friend’s skunkworks to launch the first major television network online. Discovery.com went live in July of 1995; almost 20 years later, I am still a new media science educator.

These days I must constantly engage in synthetic thinking to solve new problems, whether it is turning the real-world behavior of a wolf into a game AI or architecting best-practice JavaScript code. Trite as it sounds, the love of learning that characterized my Honors College courses permeates my work.

One CHC course that epitomizes this for me was a seminar on creativity taught by Robert Grudin in 1986. Among the highly theoretical works we read was Johan Huizinga on the role of play in culture. In response to an essay assigned on the nature of the creative process, we asserted our desire to practice creativity rather than simply discuss it. So we handed in poetry and art instead. Professor Grudin’s chagrin was fleeting, and due to his willingness to adapt the course to our audacity, we experienced the power of ideas to expand our view of our place in the world. That has, in turn, become my central motivation as a digital educator ever since.

Steven Allison-Bunnell, PhD, is product manager for the SimUText Platform at SimBio, Inc., and the principal of Human Analog Computing.
Charles Ide, PhD is the Gwen Frostic Professor of Biological Science and Director, Great Lakes Center for Environmental and Molecular Sciences, Western Michigan University.

Glacier Lab continued from front page

rare opportunity to work with several students at different levels of their academic careers, giving me insight into interesting and cutting-edge areas of study. I’ve also enjoyed the chance to take part in the research and publication of an article in Nature Climate Change."

The Glacier Lab formalizes work I have been doing with Honors College students for a long time. Last year, for example, I took my Honors College undergraduate research assistant, Jaclyn Rushing, to present our glacier-related research at the 2014 American Society for Environmental History annual conference in San Francisco. Jaclyn presented a poster on research that began as part of my NSF project but which evolved into her undergraduate thesis, “Melting Glaciers and Gender: Perspectives on Climate Change Impacts, Vulnerability, and Women’s Cultural Expressions.” We also copresented on a panel I had organized, “Crossing Academic Divides: How to Bring Undergraduate Students into Environmental History Research.” This was a unique panel for a history conference because four professors from around the country copresented their work with undergraduates and offered guidance on how to conduct collaborative student-faculty research in a discipline dominated by sole-authored scholarship.

This is the essence of the Glacier Lab, too: pushing disciplinary boundaries in tangible ways to produce better scholarship and to teach, train, and mentor students in new ways that break out of typical academic molds. That, in a nutshell, is the beauty of the Honors College, its bright students, and the ways in which it creates and promotes these kinds of unique opportunities for students and faculty alike.

Jaclyn Rushing reflects on her time in the Honors College, saying, “Overall my experience in joint research with Professor Carey was one of my most beneficial learning experiences at the University of Oregon, because it gave me the tools to not only research alongside an academic professional, but it also gave me the opportunity to explore my own interests and a glimpse of what my future would hold as an academic.”

Charles Ide continued from page 4

my career as an academic researcher. After all these years, I spend my days using molecular tools to answer basic neuroscience questions, while trying to apply some of the work to helping protect the environment. Sounds like 1970 all over again. I am deeply indebted to the Honors College, and my faculty mentors, for providing me with the opportunity and tools to pursue a career I have truly enjoyed.

Perhaps more important, during the Coos Bay project, we students had to understand and work with concepts from each other’s very different fields of study. This was easy because the breadth of our University of Oregon education provided a strong foundation for interdisciplinary thinking. This is especially important today, as we grapple with unprecedented challenges. The world will reach its carrying capacity for the human population very shortly. Increased utilization of resources will alter our world’s environments in ways that will accelerate risks to the health of ecosystems and the people who inhabit them (for example, global climate change).

Individuals who are educated to become experts within fields, and can think across disciplines to gain perspective on how to deal with a broad range of issues, will certainly be tomorrow’s heroes. I encourage the university to keep providing its students with a broad based education, because it is more important now than ever.
By David Maier ’74

I graduated from the Honors College in 1974 with a double major in mathematics and computer science. I had considered both fields for graduate study and, through some decision process I can no longer recall, ended up the next fall at Princeton University working toward my PhD in the Department of Electrical Engineering and Computer Science.

I was quite concerned early on when I realized that most of my classmates had graduated from engineering schools, and had more programming and hardware experience than I did. However, as the months went on, I realized my degree perhaps prepared me better to study computer science than theirs. There are several reasons my liberal arts background stood me in good stead both in my graduate studies and in my career as a professor.

It’s easier for a mathematician to learn programming than a programmer to learn math. My observation from 40-plus years as a computer scientist is that someone with a strong math background will have little problem mastering programming languages. Those languages are just another formal notation, and program construction is mostly about reasoning logically. In contrast, I’ve seen accomplished programmers struggle with the theoretical part of the computer science curriculum. Courses such as automata theory and algorithms require a facility with logic, set theory, and inductive proof, which usually aren’t required in engineering programs.

You’ll likely have to write more English than Java. Especially in an academic setting, you don’t get credit for your contributions unless you are able to publish them in journals and conferences. Thinking about my classmates in grad school and graduate students I’ve advised, those whose undergraduate degrees involved significant amounts of composition are at a decided advantage when it came to writing their theses and first papers. Being able to quickly organize your thoughts and put them down as clear and coherent prose seems to be a skill that transfers easily from humanities and social science to more technical fields. If you pursue an academic career, you will also be regularly trying to write compelling funding proposals and convincing reviews. Even in a more industrial setting, there are proposals, system specifications and progress reports to prepare on a regular basis.

It helps if you are literate outside your own field (or can quickly educate yourself). Many of my most rewarding research projects involved collaborators in other fields: environmental science, forest management, crystallography, patient care, canopy ecology, ocean observation, and intelligent transportation systems, to name a few. Obviously, I didn’t study all those areas as an undergrad, but I was being constantly exposed to new disciplines with their special terminology and modes of thought: psychology, economics, mathematics, philosophy, law. I pride myself on being able to quickly come up to speed on communicating with my collaborators and understanding their modes of problem-solving, and I attribute much of this ability to having to master a wide range of subjects in my undergraduate studies.

My advice to someone contemplating a career in computer science is to definitely consider the liberal arts route (and take lots of math and writing). If you can do so in the context of an honors program, all the better.

David Maier, PhD, is the Maseeh Professor of Emerging Technologies in the Department of Computer Science at Portland State University.

Honors College Turbots

David Maier recalls the mascot of the 1973–1974 Honors College intramural co-ed volleyball team: “The mascot was selected by randomly opening an unabridged dictionary in the Honors College lounge, and flipping ahead until there was a picture of an animal. We found the turbot, and I scaled up the dictionary picture by hand to make the mask for our silk screened T-shirts. The light blue shirts featured the fish (in magenta) and “HC TURBOTS.” The slogan: Turbots flounder solely for the halibut.”

I was also fortunate to have had a campus job at the UO building computerized control circuits for Professor Klopfenstein in the chemistry department. That background helped out enormously when I was assigned as a TA to the digital logic class.
There is No Such Thing as a Stupid Question

BY Opher Kornfeld ’12

Okay, so maybe not “stupid” (I can think of a few of my Honors College professors that might be disappointed with my terminology, my apologies), but perhaps less interesting, far-fetched (not in a good way), or simply not worth pursuing. I am not talking about questions you may ask in class to show that you did the reading. Instead, I am referring to questions that drive our curiosity, stretch our imagination, and contribute something valuable to our field of knowledge. These are the questions that got us excited to do the literature search, stay the extra night in lab, or simply read that section of the “Epic of Gilgamesh” again and again just to find the answer.

Not all questions are valued equally as my title may humbly suggest. Throughout my experience at the Clark Honors College, I learned that good questions not only spark an interest, but also have a purpose. Therefore, it is our job as scholars to not only answer our question, but also convince our peers that our question was worth answering in the first place. Defending the purpose of our questions is nothing new to Honors College graduates. The experience followed each one of us from our literature and history sequences all the way to our thesis defense, regardless of our major or intended career path. I still recall having to explain to Professor Louise Bishop why the metaphor behind water was a central theme in the Chinese novel The Journey to the West.

So why would a scientist-in-training find the experience of convincing a literature professor of the importance of a specific metaphor so profound? It turns out that formulating, critiquing, and defending questions are universal skills that even translate to the world of atoms, organic or inorganic compounds, equations, and proteins (a world where about a third of the current CHC student body call home). Contrary to what your general chemistry lab course would have you believe, our research is rarely guided by pre-set questions. We spend a significant amount of time familiarizing ourselves with the field by critically evaluating the relevant body of work and developing questions we hope to answer (Does this sound like an Honors College colloquium? It should). After refining our questions (when I began my PhD work, we were told that about 1 in 100 of our ideas would be considered “good”), we must convince funding agencies that our question is worth pursuing. Research scientists are in an unfortunate era in which funding sources are scarce. For example, the National Institutes of Health or NIH (which many life scientists have become well acquainted with) only funds about one out of five grant proposals that come its way. Therefore, it is imperative that we persuasively communicate our ideas.

The CHC did not teach me how to do Michaelis-Menten kinetics or an energy diagram of an enzymatic reaction (although I once wrote an essay for Professor Cogan’s class about the Gibbs free energy representation of Malory’s Morte d’Arthur). However, I believe the skills that set me apart as a scientist came from the Clark Honors College’s strong liberal arts foundation. The opportunity to practice these skills in the CHC’s small setting while simultaneously acquiring a working knowledge of any field in the context of the University of Oregon’s large research setting, is unique and valuable. On the surface, CHC graduates may appear as scientists, architects, journalists, or historians, but we are all critically-thinking scholars regardless of the jargon we use on a daily basis. The Clark Honors College trained us that way.

Opher Kornfeld is a PhD student in Chemical and Systems Biology at the Stanford University School of Medicine.
The UO Honors College: A Cauldron for a Career of Science and Music

By Mark Sykes ’78

I arrived at the University of Oregon Clark Honors College in the fall of 1973 as a physics major. An error resulted in my being placed in a dorm room in Sheldon Hall with upper-classmen and graduate students. During my undergraduate years, I watched Animal House being filmed, explored the beauty of the Cascades and the Oregon coast, studied, and made friends with whom I am still close after 40 years.

In those days, the Honors College was a cozy warren in the basement of Friendly Hall, the site of endless discussions, chess games, plans unfolding and collapsing, late nights at the piano, and the occasional drama. The core of the Honors College curriculum was “HC Arts and Letters,” a suite of small and diverse courses with options to study a wide range of philosophy, the history of ideas, and communication. These classes expanded my knowledge of Western philosophy, and began the painful process of instilling in me some intellectual rigor. It struck me that the faculty were themselves still engaged in their own intellectual journeys. Perhaps this helped me to push aside the need to find the narrow niche that would define my future self (What do you want to be? What do you want to do?). The Honors College gave me the freedom to take the risk of exploring a cacophony of interests.

One strong interest was space. After my freshman year, I jumped at the opportunity to join an astronomy group as a work-study student. Initially working for Ed Ebbighausen, I began with the analysis of eclipsing binary light curves obtained at the University of Oregon’s Pine Mountain Observatory near Bend, Oregon. I became an author of a scientific paper for the first time. After my sophomore year, I spent summer months up at the observatory, making observations primarily of the first known black hole system, Cygnus X-1. Now I was in Russell J. Donnelly’s group under the supervision of Ira G. Nolt, one of the pioneers of infrared astronomy, a wonderful person who was a major influence on me. Cygnus X-1 photometry became the core of my dissertation, and Ira my advisor.

In those days, undergraduate and graduate students staffed Pine Mountain and we were largely on our own, observing every clear night. During the days, particularly if the weather was not promising, we would journey out into central Oregon, exploring the desert, climbing through lava tubes, and hunting for obsidian. I still have large chunks of the fabled black and gold sheen obsidian in my home and yard from these expeditions. During the academic year, I spent time on the dorm piano and the piano at the Honors College, playing and writing music. One summer, I talked the School of Music into allowing me to haul a piano out of one of the practice rooms to Pine Mountain Observatory because, after all, it would still be at a UO facility (it may still be up there!).

After finishing my physics degree requirements, I auditioned for Dean Trotter at the music school and became a music composition major, while continuing to do research in astronomy. It was an intense and wonderful experience, allowing me to find the limits of my talent and be satisfied. I did not finish my com-

Mark Sykes (L) and Rick Rudy exploring near Pine Mountain Observatory ca. 1976.
Mark Sykes

continued from page 12

position degree, but graduated with a degree in physics from the Honors College, passing my thesis examination “with distinction.”

I continued my existential search that began in the Honors College, going into door-to-door sales and spending time in the restaurant business before deciding to pursue graduate studies in applied physics, earning a master’s from what used to be called the Oregon Graduate Center. I returned to space exploration, obtaining a PhD in planetary sciences from the University of Arizona. Today, I am a coinvestigator on the NASA Dawn mission to the protoplanetary body Vesta and dwarf planet Ceres in the main asteroid belt. I am the CEO and director of the nonprofit Planetary Science Institute, one of the largest private employers of planetary scientists in the world. And, I am also an attorney, admitted to the Arizona bar. Music is still an important part of my life. This year, I celebrate 30 years as a professional chorister with the Arizona Opera Company. I still play piano and compose.

The Honors College enabled me to take on new challenges with confidence, and it is a lesson I continue to apply to my business, intellectual pursuits, and music. The Honors College taught me that learning and growing never end.

Mark V. Sykes, PhD, JD, is the CEO of the Planetary Science Institute in Tucson, Arizona.

NEW FACES at the CHC

Alessandro Antonello

This fall, Alessandro “Sandro” Antonello joined the Clark Honors College as a postdoctoral research fellow. Over the next two years, Sandro will work with Mark Carey on his five-year National Science Foundation Career Grant. Sandro’s fields of study include contemporary Antarctic history and international environmental history.

Australia claims 42 percent of the Antarctic as its own territory, and the region is part of Australia’s cultural consciousness. Sandro grew up with Australian Antarctic Territory stamps, and the image of the great Australian explorer and geologist Douglas Mawson on the $100 note. His deeper interests in Antarctica developed while an undergraduate at the Australian National University in Canberra. While pursuing both history and international relations majors, he became more interested in environmental history, and questions about how we understand the environment and live in it.

Sandro received his PhD from the Research School of Social Sciences School of History at the Australian National University in Canberra. There he received a Vice Chancellor’s Scholarship that enabled him to do research in four national archives, other institutional archives, and libraries around the world. His current research investigates the history of Antarctica and the Southern Ocean since 1945, particularly the development of the contemporary international regime of environmental management and protection and its associated science and politics. In association with Associate Professor Carey, he also seeks to understand the history of glaciology and the place of ice and glaciers in Antarctic history.
NEW FACES at the CHC continued from page 13

Timothy Williams

This September, Timothy Williams joined the Clark Honors College as a visiting assistant professor of history. Tim earned his PhD in history from the University of North Carolina at Chapel Hill, where he won a university-wide teaching award and a nationally competitive dissertation fellowship from the Spencer Foundation. He is also a past research fellow at the University of South Carolina’s Institute for Southern Studies. His research focuses on intellectual culture and gender in the 19th-century United States, particularly the South. He is especially interested in the history of the book and reading, education, masculinity, and the Civil War and Reconstruction.

Tim is the author of Intellectual Manhood: University, Self, and Society in the Antebellum South (University of North Carolina Press, 2015), which focuses on the intricacies of maturation, gender, and intellectual life at the University of North Carolina (the nation’s first public university). He is currently working on a new book-length project on intellectual life in the Confederacy and the New South, which focuses on the great outpouring of printed texts, and how individuals read and appropriated them in the context of defeat, surrender, and loss. As a starting point for this book, he has recently coedited a volume of letters (under review at the University of Georgia Press) between George Washington Nelson, a Civil War prisoner from Virginia, and his fiancée, Mollie.

Alina Oboza

Alina Oboza, PhD candidate in the Department of Culture and Literature at the University of Tromsø—The Arctic University of Norway, became part of the CHC community in February 2015. She has a master’s degree from the University of Tromsø, and a BA from the University of Poznan, in Poland.

Alina came to the University of Oregon to work with Helen Southworth, CHC associate professor of literature, who has written on spatial issues in Virginia Woolf’s work. Over the next year, Alina will conduct independent research under Southworth’s guidance. She also plans to audit a few graduate courses at the English department, and meet other modernist scholars at the UO.

In her PhD dissertation, Alina will examine the liminal nature of space in Virginia Woolf’s novels, focusing especially on The Voyage Out (1915), To the Lighthouse (1927) and Between the Acts (1941). In these novels, physical boundaries are depicted as thresholds or in-between spaces in which dichotomies, such as Victorian versus modern, private versus public, and male versus female are emphasized. Alina’s dissertation will posit that these transitive and transgressive spaces are key to understanding Woolf’s spatial and narrative poetics and gender politics.
Judge Michael McShane visits CHC Seminar

By Henry Alley, Professor Emeritus of Literature, Clark Honors College

At the end of fall term 2014, Judge Michael McShane visited my upper-division seminar, Literature by and about Gay Men. Judge McShane spoke about his recent and monumental “Opinion Extending the Freedom to Marry” to couples of the same gender in Oregon. His visit came as the culmination of our study of gay men in literature beginning with Homer and ending with Lance Black’s screenplay on the life of Harvey Milk.

Judge McShane, who identifies as gay and has a male partner and children of his own, spoke first about what it was like growing up gay in a conservative area of eastern Washington. He then gave a sketch of his background, which included Lewis and Clark Law School in 1985, work in the Portland office of the Metropolitan Public Defender, and later his election as a pro tempore judge. He subsequently became an adjunct law professor at the Lewis and Clark Law School. The U.S. Senate’s confirmation of him as a federal judge followed in 2013.

His May 2014 opinion is not only a liberating document but an eloquent one. Students in my seminar came equipped with copies they had read in advance, and they asked about such issues as “heightened scrutiny,” “equal protection,” and the controversy of whether gay marriage is good for children who are in that family. Drawing on Supreme Court Justice Kennedy’s insight that banning same-sex marriage actually humiliates the children of same-sex couples, Judge McShane reiterated his own statement that “with discernment we see not shadows lurking in closets or the stereotypes of what was once believed; rather, we see families committed to the common purpose of love, devotion, and service to the greater community.” This shift for Oregon and, by extension, for our entire country can lead to an advance out of “an environment of cruelty, violence, and self-loathing.”

I have taught in the Clark Honors College since 1982, came out to the university in 1989, and recently married my life partner. I found this visit to be the perfect lesson plan for ending the course I have taught since 1997. I recently asked one of my students in this year’s seminar, Andrew Lubash, winner of the prestigious Truman Scholarship, for his response to the presentation, and Andrew wrote, “I thought Judge McShane’s visit was an amazing opportunity for students to hear from an important government official on the state of the LGBT movement in today’s society. It allowed us to compare and contrast the current fight for LGBT civil rights with the history of the movement and its relation to literature. Hearing from a federal judge on issues of LGBT rights, especially since he wrote the opinion striking down Oregon’s same-sex marriage ban, was an incredible and unique experience that I am going to remember for the rest of my life. He is a hero to the gay community, and being able to pick his brain in such an intimate environment was priceless. He’s also just a very funny and personable person and being able to see that and interact with him, a person who has fundamentally changed my own life as a gay man, was absolutely extraordinary.”

Truly, it was a once-in-a-lifetime experience for me and my Clark Honors College students. After his talk, Judge McShane very graciously signed copies of his decision for the class. Judge McShane summed up his visit this way: “The experience left me very impressed with the honors program and the caliber of students. Their understanding of the intricacies of the Constitution was impressive.”

SCHOLAR • WINTER 2015
Henry Alley, professor emeritus of literature, published three short stories: “The Back of My Mind” in Cobalt Review, “Children of Mars” in Chelsea Station Magazine, and “Cathedral Ruins” in Stone Table Review. His story “Yard Sale” won the Gertrude Press Short Story Contest, a competition in conjunction with Ooligan Press’ Write to Publish Conference in Portland. The theme was “Self-Discovery.” This January, he read a portion of the winning piece at the event. The full story will be published by Gertrude Press.

Monique Rodrigues Balbuena, associate professor of literature, gave an invited lecture at Northwestern University in April 2014. Titled “The New Faces of Ladino in Latin America Today: Language Revival and National Identity,” the lecture was sponsored by the Department of Spanish and Portuguese and the Crown Family Center for Jewish Studies, with the support of the Sava Ranisavljevic Fund. In September, Balbuena presented “Second Generation: Sephardic Poets Write the Holocaust” in the conference “Sepharad as Imagined Community: Language, Culture, and Religion from the Early Modern Period to the 21st Century,” held at the University of Illinois at Urbana-Champaign. Her essay “When the Eye Meets the World: Reading Subjectivity in Two Poems by Carlos Drummond de Andrade” was published in Portuguese Literary and Cultural Studies, No. 26. Since June 2014, she has also served as the interim director of the UO’s Latin American Studies Program.

Last spring, Louise Bishop, associate professor of literature, received the Thomas F. Herman Faculty Achievement Award for Distinguished Teaching. This UO award recognizes senior faculty members who have achieved outstanding records as teachers and contributed significantly to student learning. Twenty years earlier, Bishop received the UO’s Ersted Award for Distinguished Teaching. With her Herman award, she is now one of the few members of the UO faculty to receive both university-wide teaching awards (others include CHC faculty emeriti Frances Cogan and Joe Fracchia). Last spring, Bishop served as faculty director in the first Clark Honors College at Oxford program, also offered in spring 2015. Last summer, she traveled to Reykjavik, Iceland, for an international Chaucer conference, at which she delivered a paper on Chaucer’s Knight’s Tale and Shakespeare’s Two Noble Kinsmen, a part of her current book project on the afterlives of Middle English literature.

Mark Carey, associate dean and associate professor of history, continues work on his National Science Foundation (NSF) Career Grant, involving research on human-glacier interactions. After a research trip to the International Ice Patrol headquarters in Connecticut and iceberg research in Newfoundland last summer, he worked closely with two CHC undergraduates on research related to mountaineering history and ice-core drilling in Antarctica. He also published an article with these two students (Lincoln James and Hannah Fuller) in the journal Nature Climate Change (December 2014). As part of his NSF grant team, Carey welcomed to the Honors College a postdoctoral research fellow, Alessandro Antonello, a recent PhD from Australian National University working on Antarctic history. Carey also published a book in Peru called Glaciares, cambio climático y desastres naturales: Ciencia y sociedad en el Perú (Lima: Instituto Francés de Estudios Andinos–Instituto de Estudios Peruanos, 2014). In addition, he coauthored a book chapter titled “Integrated Approaches to Adaptation and Disaster Risk Reduction in Dynamic Socio-Cryospheric Systems” for the book Snow and Ice-Related Hazards, Risks, and Disasters (Elsevier 2014), his collaborators are from Canada, Switzerland, Peru, and the UK; another is one of his PhD students, M. Jackson, in the UO’s geography department. Thanks to a Williams Council instructional grant for teaching innovation, Carey and coorganizer Kathy Lynn (UO Environmental Studies Program) hosted the Third Annual Climate Change and Indigenous Peoples Conference in December 2014, which featured approximately 60 undergraduate student presentations; two-thirds were CHC students, including all the students from one of Carey’s courses, Climate and Culture in the Americas. Carey was also recently appointed as a core faculty member of the UO’s Environmental Studies Program.

Frances Cogan, professor emerita of literature, is currently working on her last chapter in her third book, tentatively titled The Other Ellis Island: Castle Garden New York City, 1855–90. It deals with the immigrant landing depot before Ellis Island opened in 1892. Castle Garden processed some eight million people and provided hospitalization, a refuge for poor immigrants, food, shelter, help with further transportation, and an employment office.

David Frank, professor of rhetoric, is working with principal coinvestigators Paul Slovic and Robin Gregory to host a workshop this spring titled “Understanding Decisions about Foreign Policy Interventions to Save Lives,” funded by a National Science Foundation grant. The workshop will bring to campus 14 government officials and others who participated in government decisions on mass atrocities. Professor Frank and Professor Michelle Bolduc, University of Wisconsin at Milwaukee, won a three-year National Endowment for the Humanities grant to provide translations of and commentaries on 25 articles that make up the New Rhetoric Project of Chaim Perelman and Olbrechts-Tyteca. Professors Frank and Bolduc are working with colleagues in the UO Libraries to create a website to host their translations and commentaries as well as other materials on the New Rhetoric Project.

Professor Frank is chair of the UO Global Justice Program, funded by the Savage Endowment for International Relations and Peace. The Global Justice Program collaborates with Peace Jam to bring a Noble Peace Prize winner to campus each year. In April, the program will host Rigoberta Menchú Tum, who received the Nobel Peace Prize in 1992. In March, Professor Frank was a featured speaker at a conference on speech and debate.
be published in the prestigious “Historical Studies of Urban America” series in October 2015.

Howell is also revising an article titled “The Merchant Crusaders: Eichler Homes and Fair Housing Legislation, 1949–73” for the Pacific Historical Review.

Vera Keller, assistant professor of history, coedited with Alexander Marr (of Cambridge) a special issue of the journal Intellectual History Review titled The Nature of Invention that appeared last spring. The issue was the result of an international, interdisciplinary conference coorganized by Keller and Marr that explored the changing meaning of “invention” in early modern Europe. The meaning of the word shifted from coming upon something which already existed to innovating something. The changing meanings of invention across art, rhetoric, mathematics, and science pointed to newly positive attitudes toward innovation. This fall, Keller published two articles. One, in the journal Ambix: Journal of the Society for the History of Alchemy and Chemistry, traced the atomic theories which motivated alchemical research into sources of chemical luminescence (called “phosphors”) in the 17th century. The other, in the journal Early Science and Medicine, argued that notions of human-caused natural extinction existed in premodern times. It followed discussions by Italian, French, German, Dutch, English, Spanish, and Judaeo-Portuguese authors in the 16th and 17th centuries of a single lost Libyan plant, silphion, which had disappeared in antiquity, many thought, due to overharvesting.

Barbara Mossberg, professor of practice of literature, contributed original scholarship to the “Emily Dickinson Dwells in China—Possibilities of Translation and Transcultural Perspectives” symposium at Fudan University’s Center for Literary Translation Studies on November 22–24, 2014, in Shanghai, China. In March, integrating her work as performance poet and scholar, Mossberg was part of a panel for the Council of English Association program, “Imagination and Dramatic Monologues in Current Poetry,” in Indianapolis. She will speak to the Nordic American Studies Association at UCLA University in Finland as one of the bicentennial professors of American studies for the Fulbright Program this May.

Mossberg recently gave her annual Emily Dickinson birthday lecture at Pacific Grove Public Library, “Nobody Knows This Little Rose: Revelations in Emily Dickinson’s Flower Poems,” and farewell performances as Pacific Grove (California) Poet in Residence, a position she served as scholar and poet for five years, including living in the city’s 1892 Poet’s Bench. Mossberg was given an official proclamation by the mayor and named “Poet Emerita for the City of Pacific Grove” for life. In December, in Pacific Grove’s historic Chautauqua Hall, Mossberg presented “Solstice: A Day of De-light” for a formal lecture, a “Painting Poetry” workshop studio on poetry and painting, and a poetry reading “in the old-time letter and spirit of the Chautauqua movement which founded Pacific Grove” for the world premiere of her new collection of poems, Here for the Present.

Mossberg participated in the University of Oregon’s annual weeklong LeaderShape retreat, sponsored by the UO Office of the President and the national organization LeaderShape, and spoke on the role of liberal arts learning in leadership that makes a difference to society. Mossberg also gave the keynote graduation speech for the university’s leadership service organization, Alpha Phi Omega. Off campus, Mossberg and Barbara Altmann, UO senior vice provost for academic affairs, are representing the UO as part of the American Council on Education “Moving the Needle Forward” comprehensive national initiative to integrate women’s leadership in higher-education advancement.

continued on page 19
On March 10, 2015, the University of Oregon lost a former president and Dean of UO School of Law, and professor in the Robert D. Clark Honors College. The State lost a former Attorney General of Oregon, and member of the Oregon House of Representatives. For many in the CHC community, we lost a friend, a colleague, a supporter, a pioneer.

When Dave Frohnmayer stepped down from the UO presidency in 2009, he began a new relationship with the Clark Honors College. He celebrated the inauguration of our new CHC@Oxford study abroad program. And, he taught both a new CHC colloquium, and a freshman seminar, focused on leadership. Over one hundred CHC students experienced these courses. In the CHC’s classic interdisciplinary style, Professor Frohnmayer examined leadership through the lenses of political theory, history, psychology, neuroscience, sociology, literature, art and organizational behavior.

Below are some reflections from a few of Professor Frohnmayer’s students:

Dave was unlike any professor I had ever had. He was incredibly relatable despite his unbelievable stories and life experiences! And he was truly the perfect embodiment of an ideal leader. He will be truly missed. – Kylie Loutit

David Frohnmayer was a true leader in every sense of the word. He was a political leader for Oregon, a mentor in the University of Oregon and an educator of future leaders. His memory will live on not only in his legacy, but in the legacy of the leaders whom he helped to mold.
– Cassandra O’Hearn

I am very grateful to Professor Frohnmayer because he chose to teach. He must have known that time was running out, and yet he spent hundreds of hours this and every year teaching courses, meeting individually with students, grading essays, and planning. Prof. Frohnmayer’s accomplishments were many and inspiring, but his choice to teach in the 4th Quarter is an unforgettable act of generosity. – Michael Sugar

Professor Dave Frohnmayer’s colloquium “Topics in Advanced Leadership” was without question the best course I have ever taken at this university. – William Wittenbrock
FACULTY • NEWS
continued from page 17

Roxann Prazniak, associate professor of history, spent fall 2014 teaching two courses, Silk Roads and Art and Science in Siena, Italy as part of the AHA International study-abroad program. In November, she gave a guest lecture on her current work on Ilkhanid Buddhism at the University of Pisa. In December, the long-awaited Chinese translation of her book Of Camel Kings and Other Things: Rural Rebels against Modernity in Late Imperial China was published by the Commercial Press in Beijing, People’s Republic of China.

Daniel Rosenberg, professor of history, spent fall term as the Axel Springer Fellow at the American Academy in Berlin. His article “Stop, Words” appeared in the journal Representations.

Timothy Williams, visiting assistant professor of history, is thrilled to report the publication and release of his first book, Intellectual Manhood: University, Self, and Society in the Antebellum South (University of North Carolina Press, March 2015). He has also written a book chapter on honor and young manhood that will appear in an edited collection of essays titled American Honor: Essays in Form and Meaning (forthcoming from the University of South Carolina Press). Just before arriving at the CHC, Tim received a competitive research grant from the Virginia Center for Civil War Studies at Virginia Tech, where he began archival research for his new book project on reading, writing, and publishing in the Confederacy and New South. In fall and winter term, he worked with a former colleague at the University of South Carolina to compile and edit a large collection of Civil War letters that he studied on this research trip. The proposal for the resulting volume, Imprisoned Hearts: Wartime Letter of George Washington Nelson and Mollie Scollay, 1863–72, is now under review at the University of Georgia Press for inclusion in its series “New Perspectives in Civil War.”

I first met (Professor) Frohnmayer at a scholarship dinner in my freshman year at the University of Oregon. As he gave a few remarks to the students and donors in the room, I was struck foremost by his gentleness. Although he stood well over six feet tall, his voice didn’t boom, nor his mouth over-smile. His masterful oration skills were matched only by his confident but unassuming carriage. Once a year, President Frohnmayer taught a class of ambitious freshmen on the Theory of Leadership. I knew I had to take this class.

Unlike so many professors and politicians, President Frohnmayer never grandstanded. He spoke and taught simply to inspire and share knowledge with those who might one day follow in his footsteps. He did not obsess about creating a legacy for himself, and for this he will indubitably have one. Do I agree with all of his university policies? Of course not. But a man who commits his entire life to public service should be celebrated. President Frohnmayer’s demeanor inspires me to teach with patience and gentleness, never domination. Thank you President Frohnmayer, for the inspiration you sprouted in countless hearts. You will be missed. – Amélie Rousseau
Save the Dates!

April 16, 2015
“Myth and Miracles of the King Years”, UO Presidential Lecture,
156 Straub Hall. Taylor Branch, Pulitzer Prize-winning author and public speaker.

May 14, 2015
Fifth Annual UO Undergraduate Symposium, EMU Ballroom

June 14, 2015
Clark Honors College Commencement, Matthew Knight Arena

June 15, 2015
UO Commencement, Matthew Knight Arena